Use of “Tethering” for the Identification of
a Small Molecule that Binds to a Dynamic Hot
Spot on the Interleukin-2 Surface
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The modulation of protein—-protein inter-
actions by small organic molecules rep-
resents one of the most rewarding yet
challenging topics of current research at
the interface of organic chemistry and
biochemistry. Since the biological func-
tion of most proteins depends on their
interactions with other macromolecules,
disruption or enhancement of these in-
teractions by cell-permeable molecules
provides a means of influencing protein
function. Cell-permeable molecules that
allow a given protein to be turned on or
off with high temporal and spatial con-
trol are therefore desirable tools for the
analysis of complex biological systems in
basic research.”’ However, the following
difficulties need to be overcome: 1) pro-
tein—protein interfaces are significantly
larger than the surface areas of small
molecules, 2) many protein-protein in-
terfaces lack obvious binding pockets for
small molecules, and 3) mechanism-
based or natural product-based lead
structures rarely exist.”

A solution for the problem of size dif-
ference between small molecules and
protein-protein interfaces was offered in
1995 by the group of J. Wells, who pro-
posed the presence of “hot spots” in
protein-protein interfaces.”’ Hot spots
are subregions of protein—protein inter-
faces that contribute significantly to the
overall free energy of binding between
the proteins, and whose size is compara-
ble to the surface area of drug-like mole-
cules. Further research by Wells® and
other scientists®™ recently provided addi-
tional evidence that the problem origi-
nating from the frequent absence of ob-
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vious binding pockets for small mole-
cules in flat protein surfaces can be over-
come.

The articles by Wells, Braisted, and
Oslob highlighted here™*¥ point to an
aspect of hot spots that encourages the
initial screening of diverse chemical libra-
ries: flexible protein surfaces. These arti-
cles describe the discovery of small-mol-
ecule inhibitors of the interactions be-
tween interleukin-2 (IL-2) and its recep-
tor IL-2Ra, and elucidate the inhibitors’
mechanisms of action. Compound 1, a
micromolar inhibitor of the IL-2/IL-2Ra
interaction, acts by binding to the IL-
2Ra-binding region of IL-2.¥' This region
of IL-2 had previously been defined by
mutational studies, which analyzed the
importance of individual amino acids for
binding to IL-2Ra,” and consists of a
rigid and a flexible region. Efforts to opti-
mize 1 by structure-based design and
parallel synthesis led to novel lead struc-
tures 2 and 3 (Scheme 1), whose poten-

cy did not exceed the potency of the
original inhibitor 1. X-ray analysis revealed
that inhibitor 3 binds to the hot spot of
the IL-2/IL-2Ra interaction in a similar
manner to the parent compound 1.

In order to identify more active inhibi-
tors, a fragment-assembly method refer-
red to as “tethering” was applied.”! Teth-
ering can identify low-affinity fragments
that bind to a specific site of a protein. It
involves generating protein mutants in
which cysteine mutations are introduced
at the perimeter of the protein region of
interest. Subsequently, the mutant pro-
teins are probed with disulfide-contain-
ing chemical libraries under conditions
that facilitate thiol-disulfide exchange,
and molecules that bind to the site near
the cysteine mutation (even if the affini-
ty is low) are captured by disulfide
bonds. The identity of the small mole-
cules covalently attached to the protein
is then analyzed by mass spectrometry
(Scheme 2).
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Scheme 1. IL2/IL-2Ra. inhibitors 1-4.
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Scheme 2. Principle of tethering (adapted from
ref. [5b]).

The application of tethering to the pe-
rimeter of the inhibitor binding site on
IL-2, which coincides with the IL-2Ra
binding region, revealed that two cys-
teine mutants selected small aromatic
carboxylic acids. The cysteine residues in
these mutants were located in the struc-
turally adaptive part of the IL-2Ra bind-
ing region. A combination of molecular
modeling studies and X-ray analysis of
compound 3 bound to IL-2 suggested
that the selected fragments could be
merged onto the core structure of com-
pound 2 by linking the fragments onto
the dichlorophenyl ring of 2. This led to
the identification of compound 4 (M, =
663 gmol™', Scheme 1), which was
found to be 50 times more active than
the compound 2 and which inhibited
the IL-2/IL-2Ra. interaction with an 1Cs,
value of 60 nm.

The X-ray structures of IL-2 without
ligand as well as in complex with com-
pounds 3 and 4 (Figure 1) reveal how
the surface of IL-2 adapts to accommo-
date these inhibitors. In the absence of a
ligand, no obvious binding pocket for a
small molecule is observed (Figure 1A).
Both inhibitors anchor with their hydro-
philic guanido moiety to the carboxylate
side chain of a glutamic acid residue lo-
cated in the rigid part of the IL-2Ra

binding hot spot. To accommodate the
hydrophobic dichlorophenyl moiety of 3,
two amino acids (F42 and L72) in the
adaptive part of the hot spot shift to
create a hydrophobic binding pocket
that is not present in the absence of the
inhibitor (Figure 1B). Further conforma-
tional changes of the IL-2 hot spot are
observed in the complex with inhibitor 4
and allow binding of the additional fura-
noic acid moiety of 4 in a hydrophobic
yet polar binding pocket between P34,
K35, and R38 (Figure 1C). Binding of 4 to
IL-2 creates an elongated groove reach-
ing from P34 to E62. Thus, the conforma-
tion of IL-2 changes as necessary to
adapt to the newly added functionalities
in compound 4.

While the induction of a binding
pocket on the IL-2 surface in the pres-
ence of a small molecule may initially
come as a surprise, one needs to bear in
mind that the structure of a protein
binding site cannot be visualized in the
absence of the binding partner® The
traditional “induced fit” model™ would
explain the generation of the protein
binding site by conformational changes
induced during the process of binding
between IL-2 and the inhibitors. An alter-
native model regards proteins as sta-
tistical ensembles of conformational
states."” The latter model hypothesizes
that the conformer containing the bind-
ing site for the inhibitor pre-exists even
in the absence of the inhibitor, albeit to
an extent too small to be detected in
the X-ray structure. In the presence of
the inhibitor, this conformer is postulat-
ed to become stabilized and thereby to
become predominant. Regardless of the
mechanism by which the binding pocket
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on IL-2 is generated, it is important to
realize that the absence of a binding
pocket for a small molecule in the un-
bound structure of a protein does not
mean that a protein conformation dis-
playing such a binding pocket could not
be induced or stabilized. However, bind-
ing of a small molecule to an induced or
stabilized binding pocket presumably
has an entropic disadvantage compared
to its binding to a deep binding pocket
that already exists in the absence of the
small molecule: in the latter case, substi-
tution of water molecules upon binding
of the inhibitor may compensate for the
entropy reduction accompanying the
binding event.

Tethering adds to the repertoire of
fragment-assembly methods,"? such as
SAR by NMR"™ or dynamic combinatorial
libraries,™ and has proved to be a
useful tool for the empirical optimization
of an existing lead compound binding to
a flexible protein site. Because of protein
flexibility, it appears unlikely that com-
pound 4 would have been identified by
rational design. A drawback of tethering
when compared to NMR-based screen-
ing"™ is the requirement for disulfide-
containing small-molecule fragments,
which are not readily commercially avail-
able as this point. Furthermore, despite
several reports that describe the applica-
tion of tethering for the identification of
bioactive small molecules,®'® the gener-
al scope of the method is still unclear. A
major challenge related to both SAR by
NMR and tethering appears to be the
productive merging of the existing lead
structure with the newly discovered
fragments.

Figure 1. X-ray structures of A) unligated IL-2, as well as in complex with inhibitors B) 3 and C) 4. Reprinted with permission from ref. [4]. Copyright 2003 American
Chemical Society.
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Identification of a Small Molecule that Binds to Interleukin-2

The example of the IL2/IL-2Ra. inhibi-
tors adds to the list of small-molecule
inhibitors of protein—protein interac-
tions that have been discovered despite
the difficulties related to this topic (see
introduction).'” However, as the cur-
rent level of understanding of the
mechanisms of action of small-molecule
inhibitors of protein-protein interac-
tions is still very limited, a significant
amount of further research will be nec-
essary to allow for more efficient and
systematic discovery of these valuable
tools for the analysis of protein func-
tions in basic research.
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